
How to Write Great Design

Documents

Damion Schubert

Bioware Austin

www.zenofdesign.com

About Me

• MMO Designer for 10 years
– Lead Designer for most of them

• Used to working with very complex systems

• Grew to appreciate good documentation
processes.

• Found being the ‘doc guy’ very good for my
career

• Still learning about how to do it right

What I hear

• “Design documentation is a waste of
time”

• “No one reads design docs.”

• “My programmers find reviewing design
documents is a waste of time.”

This is probably a testament to your
documentation, not to documentation in
general.

The Harsh Truth

• All designers should want to share their
ideas

• All programmers (and other team
members) should want to know what
they are building.

• That being said, most design
documentation I run across isn’t very
good, and ignores the iterative process
of finding fun.

This Talk

• The Goals

• The Problem

• Generating The Idea

• Function

• Form

• The Process

• The Scrum

Presentation Focus:

• Executive Summaries/Vision Documents

• Design Overview Documents/DDRs

• Test Plans

• Systems Design Document

Talk is not about:

Goals of Good Docs

• Capture design consensus

• Primary vision conduit between

departments

• Aid in scheduling

• Offer focus

• Give visibility to future

dependencies and design conflicts

Why is good design

documentation so rare?
• They deal with complex, interconnected

systems.

• Designers tend to overdesign.
– Systems take less time to design than to

build.

– “Big Book of Stupid”

• They don’t embrace iteration.

• They are rarely kept up to date as the
project progresses.

What other devs say:

“ Just give me

something that’s

short, targetted, and

up-to-date.”

“ I just want a bullet list

of things to do.”

“Short and accurate,

easy to find the

code bits”.

The Idea

1. Always start with a Kickoff

Meeting

• Get with your Lead Designer, and

ask these three questions:

– What are the goals of this system?

– What are the questions this document

should answer?

– How complex can this system be?

2. Identify the goals

• Do this with your lead designer in the
kickoff meeting
– Justify the system

– Help decide fencepost issues

• Example: the following two goals are
worthy, but contradictory, unless the
design plans for it up front.
– “Crafting is a sideline activity, to fill

downtime, and can be done on the field.”

– “Dedicated crafters can own their own
forges and blacksmith shops, and achieve
fame and fortune serving other players.”

3. Define the Boundaries

• Do this with your lead designer in the
kickoff meeting
– Since all systems touch each other

eventually, important to decide where a
document ends.

– Allows leads to schedule the documentation
process.

– Prevents jumping the gun, design ‘claim
jumping’

– Highlights phase 1 features

4. Determine Feature Ambition

• Do this with your lead designer in the kickoff
meeting

– Token Representation. We just want the bullet
point on our box

– Competitive. We want what the market leader has
with minor tweaks, but we don’t want to be too risky.

– Alternative. Nothing too big, but definitely different
from our competitor.

– Innovative. This feature will crush opponents, and
we will hear the lamentations of their women.

5. Research.

• Look at previous games.

– Especially what didn’t work!

• Look at non-game subject matter information

– If you’re making a cooking game, watch some Iron

Chef!

• Talk to subject matter experts

– Even on other teams and/or at other companies!

6. Brainstorm

• Many brainstorming techniques, all

sharing the same general principles

– Multiple (6-8) people

– Encourage out of the box thinking

– No idea is a bad idea

– Identify the ideas that resonate.

7. Cull the Weak

• Now, some ideas are bad ideas.

• Ideas to cut
– Unbuildable

– Over-ambitious

– Conflicting with goals, or with each other

– Just plain weird ideas

• Use kickoff meeting results as your razor

• Might want to save the intriguing ones in a ‘morgue’
somewhere.

• Begin prioritizing the Darwinian survivors.

8. Keep it simple

• At least initially

• Focus on the essentials, emphasize getting
something playtestable as fast as possible.

• Designs should become complex based upon
feedback and design iteration.

If you are afraid of what people will say when
they read your design document, it is
probably either too complex or too weird.

9. Embrace Iteration

• No game design survives contact

with reality unscathed.

• Don’t get emotionally attached to any

aspect of the design.

• Prepare to iterate on designs once they

are coded

Function

1. Know your Target

• People interested in a design doc:

– Design team. To achieve design

consensus.

– Programming team. To build the game.

– Producers. To schedule and go get money.

– QA. To build test plans.

– External partners. To reach quota of

annoying demands.

1. Know your Target

• Programmers are the most
important target.

– It’s how the game gets made.

– Often, other documents are more
useful for other audiences.

• Ask them what they want

– If they say to ignore one of my rules,
do it!

2. Keep it Short

• Easier to read

• Easier to write

• Easier to maintain

• Easier to handle politically

• Less likely to be contradictory

• More likely to be simple designs

2. Keep it Short

• Kill the fluff

• Kill empty sections

• Kill ‘cut and paste’ stuff

• Kill unnecessary text of obvious

systems

2. Keep it Short

• Remember:

– Programmers almost always want a

short bullet list

2. Keep It short

• Guild Invitation Confirmation UI. Players get a Confirmation

UI when creating a guild. This asks “Do you really want to join

this guild?” and has an ‘ok’ button and a ‘cancel’ button.

• OK Button. The confirmation UI has an OK button, which

confirms the transaction.

• Cancel. The confirmation button has a cancel button,

which prevents the guild from being formed.

• Close button. There is an ‘X’ button in the upper right

hand corner of the UI, which is identical to the cancel

button.

• Esc. Pressing escape will cancel the transaction, and

performs identically to hitting the cancel button.

Too Long

2. Keep It short

• Guild Invitation Confirmation UI. Players get a confirmation

dialogue when invited to a guild (see CommonDialogs.doc).

Better

2. Keep It short

• Crafting Tithe. Hephaestus, the god of the forge, has instituted

his will upon the craftsmen of Athens, and all are humbled by

his greatness. As such, any players who wish to craft any items

must pay a tithe to the temple of Hephaestus to earn his favor,

unless he has found an item like the Hammer of the Gods,

which allows the player to bypass these tithes.

Who cares?

2. Keep It short

• Crafting Tithe. Players who craft items must pay a tithe to the

local temple when crafting.

• Bypassing tithes. Certain tools allow the player to bypass

the tithe.

Better

3. Prioritize the Design

• Give the features a priority, break

them into phases

• Be sure document clearly

separates out later phase features.

3. Prioritize the Design

• Players can equip items on the inventory screen.

• Equipped items change their combat stats.

• Player equipment is visible when worn.

• Player equipment may be enchanted with special

effects

• Players may have their guild insignia drawn on their

player shields.

Wrong!

3. Prioritize the Design

• (Phase One) Players can equip items on the inventory

screen.

• (Phase One) Equipped items change their combat stats.

• (Phase Two) Player equipment is visible when worn.

• (Phase Two) Player equipment may be enchanted with

special effects

• (Phase Four) Players may have their guild insignia

drawn on their player shields.

Still not great

3. Prioritize the Design

• Players can equip items on the inventory screen.

• Equipped items change their combat stats.

• Player equipment is visible when worn.

• Player equipment may be enchanted with special

effects

• Players may have their guild insignia drawn on their

player shields.

Basic Equipment (Prototype)

Advanced Equipment (Phase 2)

Guild Insignia on Equipment (Phase 4)

Better

3. Prioritize the Design

– Phase 1: Prototype feature.

– Phase 2: Core feature.

– Phase 3: Must be in shipped product

– Phase 4: Wishlist, possibly expansion

– Phase 5: Yeah, right

4. Illustrate

• A picture is worth a thousand

words.

• Tactics:

– Screens of other games with similar

features.

– Visio diagrams

– ‘Example’ text

4. Illustrate

• Players can remove a skill in their skill tree by going to a

special NPC (the ‘mindwiper’) and selecting that skill.

• Removing a skill has a monetary cost in credits.

• The player cannot remove a skill that is a prerequisite

for another skill in his skill tree.

Joe Bob decides that he wants to unlearn Basic Psionics

and Advanced Psionics, so he goes to a mindwiper. He

tries to remove the Basic Psionics skill tree, but the

transaction fails, as it is a prerequisite for Advanced

Psionics. So Joe Bob unlearns Advanced Psionics and

then Basic Psionics. In this case, both boxes are

successfully removed.

Example

4. Illustrate

What’s wrong with this?

• The more abstract a picture is, the

easier it is for a reader to project

his own viewpoint.

• You want to give your UI artist

something that is functionally

accurate, but let HIM decide the

aesthetics.

5. Don’t tell others How

to do their jobs

Orcs

Elves

Dwarves

Hobbitses

Puma People

Kraven's Reputation

Better, believe it or not!

5. Don’t tell others How

to do their jobs

“Quests.doc”

• Quest Variables will be stored in a linked list of

bitvectors on the character object.

This is not your problem!

5. Don’t tell others How

to do their jobs

“Quests.doc”

• Memory considerations of quest variables.

• There will be approximately 2500 quests in the game.

• Players may have 20 open quests at a time.

• Players can make up to 10 decision points in one

quest, the status of which must be stored until the

quest is completed.

• Players may find content later which is unlocked by

quests they have already completed – the completion

state (and outcome) of a quest must be stored.

This is your problem. Let coders solve it.

6. Capture your Reasoning
• But compartmentalize it.

• Players may not place items on the

ground. This is to help reduce visual

clutter and ensure that players may not

be disruptive through the placement of

hundreds of items.

No!

6. Capture your Reasoning
• But compartmentalize it.

• Players may not place items on the

ground.

…

FAQ: Why can’t players place items on

the ground?

This is to help reduce visual clutter and

ensure that players may not be

disruptive through the placement of

hundreds of items.

Much better!

6. Capture your Reasoning

• Capturing your reasoning is especially
useful for longer projects, where the
team may literally forget why they chose
one side or the other.

• Capturing your reasoning, by extension,
reduces the number of times
contentious issues are reopened.

FORM

1. Separate Code from Content

• Crafting tools. Some crafting skills will require crafting

tools to be used, or the player will get an error message

saying he cannot use that skill.

• Blacksmith. Using blacksmith skills requires a

blacksmith hammer and tongs. Players may eventually

find more advanced hammer and tongs, that give

access to more crafting options.

• Tailor. Being a tailor requires a loom.

• Alchemy. Alchemy requires a test tube set. Players

may eventually find more advanced test tubes, that

give access to more crafting options.

• Sculpture. Sculpture requires a hammer and chisel.

Scary wall of bullet points!

1. Separate Code from Content

• Crafting tools. Some crafting skills will require crafting

tools to be used, or the player will get an error message

saying he cannot use that skill.

• Advanced tools. Some crafting skills let the player

craft more powerful items with more powerful tools.

Skill Tools Advanced Tools

Smithing Hammer and Tongs Yes

Tailoring Loom

Alchemy Test Tube Set Yes

Sculpture Hammer and Chisel

Crafting Skills and Tools

Only two requirements – easy!

1. Separate Code from Content

• Don’t make people hunt for the

information they want.

• Separate content into appendices,

or into tables.

2. Invest in a good Format

• Use a team template

• Change the font

• Use horizontal lines

• Use callout boxes for example

• Use bullet lists

• Don’t be a slave to your format

Viva la Difference

• This is the default Microsoft Powerpoint

template

– Not very good looking, is it?

– Taking a little time to change out your fonts or

add a watermark can have a huge impact on

how professional your documents feel.

3. Use Clear Terminology

• This spell has a high DPS,

but also has a hate

reduction component to

reduce aggro in raids.

• There can only be six

spawn agents per

superchunk.

Don’t assume what your readers know!

3. Use Clear Terminology

• Use plain english

• Avoid Wonky terms

• Avoid company-specific terms

• Use new terms consistently

• Consider a glossary

4. Kill Redundancy

• Duplication is the devil, leads to

confusion, update errors.

“CombatStats.doc”

• Strength increases the

player’s damage by

STRENGTH/2.

• Dexterity increases the

player’s accuracy by

DEXTERITY/3

• Body odor reduces the

player’s chance to seduce

NPCs by BODYODOR/2

“Items.doc”

• Strength increases the

player’s damage by

STRENGTH/2.

• Dexterity increases the

player’s accuracy by

DEXTERITY/3

• Body odor reduces the

player’s chance to seduce

NPCs by BODYODOR/2

Redundant Department of Redundancy !

4. Kill Redundancy

• Duplication is the devil, leads to

confusion.

“CombatStats.doc”

• Strength increases the

player’s damage by

STRENGTH/2.

• Dexterity increases the

player’s accuracy by

DEXTERITY/3

• Body odor reduces the

player’s chance to seduce

NPCs by BODYODOR/2

“Items.doc”

• Enchantments on an item

can increase the players

stats when worn. See

CombatStats.doc for more

details.

Make one doc the owner, point others to it.

5. No Weak language

• Players might be able to woo NPCs of

the opposite sex.

• In the future, we may add the

functionality to increase your chances to

woo women by playing sappy love

songs.

• If this is implemented, maybe players

can write their own love songs.

No!

5. No Weak Language

Romancing NPCs (Prototype)

• Players can attempt to romance NPCs

of the opposite sex by dialogue options

• Players can also attempt to romance

NPCs of the opposite sex by serenading

them with songs they’ve learned.

Advanced Romance (Phase Four)

• Players can craft their own songs for

use in the romance system.

Better!

5. No Weak Language

• Use strong, declarative language

– No ‘maybe’, ‘could’, ‘might’

– Even avoid ‘may’.

• Don’t be ambiguous

• Don’t say ‘we’

• Choose a direction

• Move ‘maybe’ features to later phases.

The Process

1. Enforce the Kickoff Meeting

• Three questions:

– What are the goals?

– What are the boundaries of this design

document?

– What is the acceptable ambition level for

this feature?

• Goal is to give designers autonomy in a

well-defined way – to define the

‘boundaries of the box’.

2. Embrace Iterative Design

• Design the next immediate phase
to fine-tooth detail

• Design other phases to man-month
degree`

• Don’t emotionally invest in far-off
features

• Revisit documentation as the
design shifts and iterates.

3. Design Documentation

is a collaborative Process

Designer/Lead Design Setup Meeting

"Experts" Brainstorm

Document First Pass (Lead Designer Review)

Design Team Review

Senior Leads Review

Approved!

("Publish to team")

Design documents

written in a vacuum

almost never survive

‘contact with the

enemy’.

4. Have an Approval Process

• Should telescope out
– Lead Designer Approval First

– Design Team Approval Next

– Senior Leads/Cross-Team Approval Next

• This approach allows the design team to
speak with one voice about a finished design.

• Is always tough to get up and running, but
usually accelerates once teammates find
value.

5. Have a visual Method of Tracking

Progress

In Queue In Progress LD Review

Team Review

SL Review

Approved

(I like using post-it notes)

6. Have a change Process

• Designs will shift as the game iterates. A
process is necessary to ensure that
design changes are disseminated to
decision makers on the team.

• The Lead Designer can usually act as
the arbiter of when a change needs to
be approved by the Senior Leads.

7. Make it Searchable

• Design docs will only be used as a
reference if the user can find what he
needs.

• Possible means:

– Wiki

– Desktop Search

– Design Bibles

8. Automate what you can

• Advantages of Documentation

Automation:

– Accuracy, even postscriptively

– Searchable

– Easy to add auditing and reports

9. Be Prepared to drop Trou

• You never know when external people will want to
see your design documentation.

• Documentation should be ready to go on half-a-day’s
notice.

• Design team conflicts should not be visible in design
documentation, or should be easy to excise.

You need to discuss with your producers what you will
never show.

10. Consider expiration Dates.

• A stray idea:
– All documents ‘expire’ after 6 months, after which

designers have to go back and verify that said
documentation is still valid

• Check for changes in design

• Check for changes in priority

• Identify and signify aspects of design that have been
implemented.

• Harder to do with a lot of documentation

Does your documentation need to

stay up to date?

• Depends on your reality.
– Yes for large projects

– Yes for games with a long life (live components or
expansions) and teams with high expected
turnover.

– Yes if your external partners are especially
annoying.

11. Occasionally audit the process.

• Design documentation procedures must work
for the team. If the team sees the
documentation process as oppressive, the
design documentation process will end up
subverted.

• Never lose sight of your goals:
– Short

– Up-to-date

– Programmer Friendly

Scrum and Documentation

Brief Overview

• Small multidisciplinary teams

• Manage their own fates

• Product Backlog of features and subfeatures
to implement
– Prioritized by ‘product owner’, usually producer or

senior designer

– Idea is team is always working on the most
important thing first

• Scrum is designed to be ‘documentation light’
– Some advocates even claim it should be docless

So what does this change?

• Surprisingly not much
– Still need documentation to satisfy publishers and

other external contract partners

– Still need documentation for QA test plans

– Still need the process that generates the ideas

• Focus changes
– Iteration and post-implementation becomes a

priority.

– Non-programmer audiences become a priority.

• Most important change
– Structure documentation to use user stories

Use user stories

• Independent – doesn’t overlap other user stories

• Negotiable – details and implementation are less

important than end user satisfaction.

• Valuable – written with the end user in mind.

• Estimatable – detailed enough for programmers to

architect & schedule

• Small – no more than a week.

• Testable – design and programming can agree

when it’s done.

Use user stories

• The player hears a sound effect when he gains a level.

Too small!

• The players can elect a new space ambassador .

Too boundless!

• When the player gains a level, he hears a sound effect,

sees a particle effect, gains 3 attribute points, gains 5 skill

points and gains access to a prestige class if he is level 10.

Too long!

Use user stories

• The player gains a level when he crosses the

experience point threshold.

• The player hears a ‘ding’ sound effect.

• The player sees a particle effect.

• The player gains 5 attribute points to be spend on his

stats.

• The player gains 3 skill points to be spent on his skill

tree.

• If the player has reached level 10, he can apply his

Prestige Class (see PrestigeClasses.doc)

We use 1 user story with subrequirements,

equal to 2-5 programming days of work.

Questions?

